CPGE IBN ABDOUNE - KHOURIBGA — MPSI

SÉRIE *n*°26

Coniques

Année scolaire 05/06

Exercice 1

Pour les coniques suivantes, déterminer la nature, les éléments caractéristiques et une équation réduite :

1.
$$x^2 - xy + y^2 = 12$$
.

2.
$$x^2 + \sqrt{3}xy + x - 2 = 0$$
.

3.
$$2xy - 2\sqrt{2}x - 1 = 0$$
.

4.
$$\frac{x^2}{4} - \frac{\sqrt{3}}{2}xy + \frac{3}{4}y^2 - (1 + 3\sqrt{3})x - (3 - \sqrt{3})y + 13 = 0.$$

Exercice 2

Déterminer l'ensemble des centres, des sommets et des foyers des ellipses d'équation

$$\lambda x^2 + y^2 - 2x = 0$$

lorsque λ décrit \mathbb{R}^{+*} .

Exercice 3

Soit ε l'ellipse d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- 1. Soit m un réel. Déterminer les droites de coefficient directeur m qui sont tangentes à ε .
- 2. A quelle condition les droites y = mx + p et y = m'x + p' sont elles perpendiculaires?
- 3. En déduire que le lieu des points du plan par lesquels passent deux tangentes à ε qui sont perpendiculaires est un cercle dont on précisera le centre et le rayon.

Exercice 4

Dans le plan muni du repère orthonormé (O, i', j'), on considère les points A(1,0) et B(1,0). On désigne par ε l'ensemble des points du plan dont la somme des carrés aux trois côtés du triangle OAB est égale à $\frac{1}{3}$.

- 1. Démontrer que ε est une ellipse dont on donnera une équation réduite.
- 2. Montrer que l'ellipse ε est tangente aux droites (OA) et (OB).
- 3. Donner une représentation paramétrique de ε dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Exercice 5

Soit p un réel positif et \mathscr{P} la parabole d'équation $y^2 = 2px$ dans le plan rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1. Déterminer l'axe, le sommet, le foyer F et la directrice D de \mathscr{P} .
- 2. On considère la représentation paramétrique $x = \frac{t^2}{2p}$, y = t de \mathscr{P} . Écrire l'équation de la tangente à \mathscr{P} au point de paramètre t.
- 3. Soit M_0 de coordonnées (x_0, y_0) un point du plan. Écrire une équation vérifiée par le paramètre t d'un point de $\mathscr P$ pour que la tangente à $\mathscr P$ en ce point passe par M_0 . Discuter selon la position de M_0 le nombre de tangentes à $\mathscr P$ passant par M_0 .
- 4. Donner une condition nécessaire et suffisante sur M_0 pour qu'il passe par M_0 deux tangentes à \mathscr{P} perpendiculaires entre elles.
- 5. Soit M un point de \mathscr{P} , H son projeté orthogonal sur D. Montrer que tout point de la tangente en M à \mathscr{P} est équidistant de H et F.
- 6. En déduire une construction à la règle et au compas des tangentes à \mathscr{P} menées par un point M_0 du plan (dans le cas où il existe de telles tangentes). Retrouver ainsi les résultats de la question 3.
- 7. Déduire de la question précédente une nouvelle démonstration du résultat de la question 4.

Exercice 6

Le plan est rapporté à un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$.

- 1. Écrire l'équation de l'hyperbole \mathcal{H} de foyer F(3,2), de directrice D d'équation $x_y + 1 = 0$ et d'excentricité $\sqrt{2}$.
- 2. Écrire l'équation de \mathcal{H} sous la forme (x-a)(y-b)=c pour des réels a,b,c. En déduire les coordonnées du centre Ω de \mathcal{H} .
- 3. Déterminer les axes, puis le second couple foyerdirectrice (F', D') de \mathcal{H} (on donnera les coordonnées de F' et une équation de D').
- 4. Montrer que la courbe $\mathscr E$ d'équation $3x^2 + 3y^2 + 2xy 14x 26y + 27 = 0$ est une ellipse.
- 5. Montrer que Ω est le centre de \mathscr{E} .
- 6. Déterminer les axes et l'équation réduite de \mathscr{E} .
- 7. En déduire les longueurs des axes, la distance focale et l'excentricité de \mathscr{E} .
- 8. Montrer que les coniques $\mathscr E$ et $\mathscr H$ ont les mêmes foyers.

Exercice 7

On donne un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ et on considère les cercles $\mathscr C$ d'équation :

$$(x-m)^2 + y^2 = R^2 - m^2$$
 (1)

où m est un paramètre réel et R un nombre positif donné.

- 1. Former l'équation qui détermine m quand $\mathscr C$ passe par un point donné S, de coordonnées (x,y).
- 2. Montrer que le problème admet une solution unique si S appartient à une ellipse \mathscr{E} .
- 3. Dans quelle région, limitée par l'ellipse, doit se trouver *S* pour que le problème admette deux solutions?

Exercice 8

Soient A et B deux points distincts du plan et soit I le milieu de [AB]. Déterminer le lieu des points M du plan tels que $MI^2 = MA \times MB$.

••••••